Assessment of Occupational Safety and Health Hazards Exposure of Workers in Small Scale Gold Mining

CHARLENE S. PARAFINA
Senior Industrial Hygienist
Environment Control Division
Occupational Safety and Health Center
Outline of Presentation

1. Background
2. Research Questions
3. Methodology, Selection of Study Areas & Limitations
4. Results and Findings
5. Conclusion
6. Recommendations
7. Challenges
Background

Assessment of OSH Hazards Exposure of Workers in SSGM

- ASSM – **Informal & out of the mainstream**
- The **Philippines ranks 22**nd among the list of world’s gold producing countries in 2017 and **5th** among the 6 Asian countries producing 91% of the precious metal in the continent
- About **236,000 workers** are employed in mineral industry (EMB-DENR, 2016)
- The Occupational Safety and Health Center, DOLE recognizes the need to **protect of human health and the environment**
- **The ILO and OSHC collaboration**
- The **first study with actual measurement of health hazards**
Research Questions

- What are the **working conditions, work practices and levels of exposure** of workers to physical and chemical hazards and other OSH hazards during extraction and gold processing activities in selected small scale gold mining in the Philippines?

- What are the **gaps** (if there are) in the small scale gold mining related safety and health policies and standards and their implementation?
QUALITATIVE & QUANTITATIVE SCIENTIFIC RESEARCH

1. Qualitative Data Collection
 a. Key informant interview – structured questionnaire-guided interview
 b. Walk-thru, work process or work practice observation – identification of OSH hazards

2. Quantitative Data Collection
 a. Measurement of physical and chemical hazards using industrial hygiene equipment
 b. Laboratory analysis of WEM samples collected and silica content (%) in ore and/or tailings collected
 c. Comparison with OSHS, DOLE and other references
Study Areas:
Small Scale Gold Mining in the Phils.

- CAR
- Region 5
- Region 9
- Region 11
- Region 12
- Region 13

16 Gold Processing Plants/Areas
14 Small Scale Gold Mine Sites
Limitations of the Study

• Limited number of fully operating SSGM due to “no-permit - closure” issues
• Awareness on RA 9231 on Child Labor and prohibition on the use of mercury
• Condition underground (sampling equipment)
• Weather condition and location
• Safety and security of research team
Small Scale Gold Mining Process
Gold Processing

1. Feeding
2. Crushing/Grinding
3. Leaching/Precipitation
4. Ashing
5. Retorting Melting (Separate Ag & Au)
6. Refining
Chemical Hazards: SILICA DUST

Exposure of Workers

<table>
<thead>
<tr>
<th>Conc. Total Dust</th>
<th>TLV</th>
<th>Conc. Respirable Dust</th>
<th>TLV</th>
<th>%silica</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.61</td>
<td>0.347</td>
<td>1.17</td>
<td>0.117</td>
<td>83.33</td>
</tr>
<tr>
<td>3.21</td>
<td>0.586</td>
<td>2.41</td>
<td>0.199</td>
<td>48.17</td>
</tr>
<tr>
<td>2.15</td>
<td>0.491</td>
<td>1.69</td>
<td>0.166</td>
<td>58.06</td>
</tr>
<tr>
<td>2.56</td>
<td>0.512</td>
<td>1.54</td>
<td>0.174</td>
<td>55.54</td>
</tr>
<tr>
<td>5.33</td>
<td>0.451</td>
<td>3.50</td>
<td>0.153</td>
<td>63.45</td>
</tr>
<tr>
<td>4.45</td>
<td>0.347</td>
<td>2.91</td>
<td>0.117</td>
<td>83.33</td>
</tr>
<tr>
<td>10.29</td>
<td>0.451</td>
<td>6.18</td>
<td>0.173</td>
<td>63.45</td>
</tr>
<tr>
<td>13.33</td>
<td>0.471</td>
<td>8.00</td>
<td>0.159</td>
<td>60.71</td>
</tr>
</tbody>
</table>

Ore Feeding & Ball Mill Operation
Chemical Hazards: CYANIDE & NITRIC ACID

Cyanide Preparation & Cyanidation/Agitation Process

Retorting, Smelting & Refining Processes

Passed TLV, OSHS = 10 ppm

Passed to Action Level TLV = 2 ppm
Chemical Hazards: CARBON MONOXIDE & OTHER GASES

Carbon Monoxide

<table>
<thead>
<tr>
<th>Location</th>
<th>CO, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHING ROOM</td>
<td>125</td>
</tr>
<tr>
<td>TAILINGS POND (NEAR ASHING)</td>
<td>202</td>
</tr>
<tr>
<td>REST AREA (NEAR ASHING)</td>
<td>106</td>
</tr>
<tr>
<td>FIRING</td>
<td>4</td>
</tr>
</tbody>
</table>

TLV, OSHS = 50 ppm

Underground Mine Sites

<table>
<thead>
<tr>
<th>AT</th>
<th>RH</th>
<th>O2</th>
<th>CO</th>
<th>H2S</th>
<th>VOC</th>
<th>Comb. Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-33°C</td>
<td>78-99%</td>
<td>19.6 – 21.3%</td>
<td>< 1 ppm</td>
<td>< 1 ppm</td>
<td>ND</td>
<td>0</td>
</tr>
</tbody>
</table>

TLV, OSHS

| 50 ppm | 10 ppm |

OSHA 29 CFR 1926.1202

| 19.5 - 23.5% |
Physical Hazards: NOISE

BALL/ROD MILL AREA

65% - FAILED 20% ACTION LEVEL 15% - PASSED

Failed: 91 -100 dBA
Action Level: 87 – 89 dBA
Passed: 80 – 82 dBA

PNEL Table indicating the different sound levels and its corresponding allowable hours of exposure. OSHS, DOLE

<table>
<thead>
<tr>
<th>Duration per day, hours</th>
<th>Sound Levels, dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1-1/2</td>
<td>102</td>
</tr>
<tr>
<td>AGITATION/LEACHING</td>
<td>FIRING</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Noise level</td>
<td>GPP</td>
</tr>
<tr>
<td>89</td>
<td>GP1</td>
</tr>
<tr>
<td>89</td>
<td>GP1</td>
</tr>
<tr>
<td>101</td>
<td>GP4</td>
</tr>
<tr>
<td>77</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>GP4</td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Blasting inside tunnel: 115 dBA Drilling inside tunnel: 82-85 dBA
Health Hazards: HEAT STRESS

WBGT INDEX (HEAT STRESS)

Recommended WBGT Index: 30°C
Action Limit: 27°C
Moderate Workload – REFINING/RETORTING
25% to 50% Allocation of Work
Reference: ACGIH

- GP1: 28.5°C
- GP3: 31.2°C
- GP4: 30.8°C
- GP11: 28.8°C
- GP16: 30.9°C

60% 40%
Gold Processing Plants: VENTILATION

Air Velocity (meter per second)
Ball Mill/Agitation/Refining

- **Refining**
 - Passed (0.25 m/sec)
 - Failed (0.05 – 0.15 m/sec)

- **Agitation Tanks**
 - Passed

- **Ball Mill**
 - Passed

- Enclosed workarea
- Semi-open or open area
Underground Mining
VENTILATION/OXYGEN LEVEL

Minimum Air Velocity Standard, OSHS-DOLE
0.25 m/sec

<table>
<thead>
<tr>
<th>Measuring Point</th>
<th>Air Velocity (m/sec)</th>
<th>Oxygen Level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A (entrance of horizontal tunnel)</td>
<td>0.28</td>
<td>21.3</td>
</tr>
<tr>
<td>Point B (300 meters from the entrance)</td>
<td>0.15</td>
<td>21</td>
</tr>
<tr>
<td>Point C (480 meters from the entrance)</td>
<td>0.14</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Point D (drive (branch) from Point C)
0.12 m/sec, 20.5% oxygen level

Point E (640 meters from the entrance)
0.1 m/sec, 20.8% oxygen level

Point F (sinking - about 60 m deep)
0.08 m/sec, 20.5% oxygen level

O2 level based on OSHA 29 CFR 1926.1202 = 19.5% – 23.5%
Identified Health Hazards

Biological Hazards
Identified Health Hazards

- Ergonomic Hazards
- Psychosocial Hazards
Safety Hazards: GPP
Safety Hazards: GPP
Observed Chemical Related Hazards & Work Practices
Safety Hazards: Underground Mining

- Stope (structure) collapse
- Cave-in
- Flood (water inrushes)
- Loose rocks or debris
- Fire
- Blasting related hazards
- Improper choice of working tools
- Mechanical & electrical hazards
Condition of Processing Plants After Closure
Conclusion

Are Workers in Underground Mining and Gold Processing Exposed to Different Safety and Health Hazards While at Work?

1. Various **safety hazards** (mechanical, electrical, etc.) - easily identified or seen but were **not given attention**.

2. Different **health hazards** such as noise, silica dust and other chemicals but **no measurement or exposure monitoring** has been conducted.

3. **Absence of risk based programs** to address workers’ protection
CONCLUSION

There are **identifiable gaps** on the needs of the workers **vis-à-vis** current Small Scale Gold Mining OSH-related laws and policies.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OSHS, DOLE - Rule 1003.04: Application to Mines</td>
</tr>
<tr>
<td>2.</td>
<td>MGB, DENR AO 97-30: WEM, OELs, Risk-based Health Programs and Guidelines on the “temporary” or “permanently” closed processing plants</td>
</tr>
<tr>
<td>3.</td>
<td>Safety and Health in Mines Convention (C176)</td>
</tr>
<tr>
<td>4.</td>
<td>Overlapping and sometimes conflicting OSH-related policies among concerned national and local governments</td>
</tr>
</tbody>
</table>
RECOMMENDATIONS

BRIDGING THE GAPS ON THE NEEDS OF WORKERS IN SSGM & PROCESSING FROM OSH STANDPOINT

MULTI-STAKE HOLDERS PARTNERSHIP

1. Big Brother (Large Scale Mines) - Small Brother (Small Scale Mines) Partnership to Occupational Safety and Health

2. Training/Awareness of all concerned - Training Needs Assessment

3. Central Safety and Health Committee – PMRB, LGU, SSMA, Permittee (with defined roles and responsibilities)

4. Need to revisit all OSH in mines related policies/issuances (look for the missing links)
CHALLENGES

GOAL (ROLE): GOVERNMENT SHOULD PROVIDE DECENT WORK

<table>
<thead>
<tr>
<th>Craft</th>
<th>UNIFIED OSH POLICIES/REGULATIONS SPECIFIC TO SMALL SCALE (GOLD) MINING SECTOR WITHOUT SACRIFICING THEIR INCOME AND THE ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A COMPREHENSIVE HEALTH SURVEILLANCE SYSTEM TO ENHANCE WORKERS PROTECTION, SOCIAL BENEFITS AND EMPLOYEES COMPENSATION</td>
</tr>
<tr>
<td></td>
<td>DEVELOPMENT OF RISK-BASED HYGIENE MANAGEMENT PLAN TO ADDRESS SMALL SCALE MINE-SPECIFIC OSH HAZARDS, MONITORING PROGRAMS AND CONTROL MEASURES ALIGNED TO THE NEEDS OF SSGM WORKERS</td>
</tr>
<tr>
<td></td>
<td>FORMALIZATION AS THE ANSWER TO WORKERS MAXIMUM PROTECTION</td>
</tr>
</tbody>
</table>
Finally...

“Ang mga minerong malusog at ligtas, haligi ng magandang bukas.”
Thank you